Page tree


Contents:

Our documentation site is moving!

For up-to-date documentation of Designer Cloud on AWS, please visit us at https://help.alteryx.com/AWS/.

   

Contents:


The IFVALID function writes out a specified value if the input expression matches the specified data type. Otherwise, it writes the source value. Input can be a literal, a column reference, or a function.

 

The VALID function simply tests if a value is valid. See VALID Function.

Wrangle vs. SQL: This function is part of Wrangle, a proprietary data transformation language. Wrangle is not SQL. For more information, see Wrangle Language.

Basic Usage

ifvalid(myZip,'ZipCode', 'ok')

Output: Returns the value ok if the value in myZip matches the ZipCode data type. 

Data type with formatting options:

For data types with formatting options, such as Datetime, you can specify the format using an array, as in the following:

ifvalid(myDate, ['Datetime','mm-dd-yy','mm*dd*yy'], 'true')

Output: Returns the value true, if the value in the myDate column is a valid Datetime value in yy-mm-dd or yy*mm*dd format.

Syntax and Arguments

ifvalid(column_string, data_type_literal, computed_value)


ArgumentRequired?Data TypeDescription
source_valueYstringName of column, string literal or function to be tested
datatype_literalYstringString literal that identifies the data type against which to validate the source values
output_valueystringString literal value to write

For more information on syntax standards, see Language Documentation Syntax Notes.

source_value

Name of the column, string literal, or function to be tested for data type matches.

  • Missing literals or column values generate missing string results.
  • Multiple columns and wildcards are not supported.

Usage Notes:

Required?Data TypeExample Value
YesString literal, column reference, or functionmyColumn

datatype_literal

Literal value for data type to which to validate the source column or string.

  • Column references are not supported.

Usage Notes:

Required?Data TypeExample Value
YesString literal'Integer'

Valid data type strings:

When referencing a data type within a transform, you can use the following strings to identify each type:


NOTE: In Wrangle transforms, these values are case-sensitive.

NOTE: When specifying a data type by name, you must use the String value listed below. The Data Type value is the display name for the type.

Data TypeString
String'String'
Integer'Integer'
Decimal'Float'
Boolean'Bool'
Social Security Number'SSN'
Phone Number'Phone'
Email Address'Emailaddress'
Credit Card'Creditcard'
Gender'Gender'
Object'Map'
Array'Array'
IP Address'Ipaddress'
URL'Url'
HTTP Code'Httpcodes'
Zip Code'Zipcode'
State'State'
Date / Time'Datetime'

output_value

The output value to write if the tested value is valid for the specified data type.

Usage Notes:

Required?Data TypeExample Value
YesString or numeric literal'Data type mismatch'

Examples


Tip: For additional examples, see Common Tasks.

Example - IF* functions for data type validation

This example illustrates how to use the IF* functions for data type validation.

Functions:

ItemDescription
IFNULL Function The IFNULL function writes out a specified value if the source value is a null. Otherwise, it writes the source value. Input can be a literal, a column reference, or a function.
IFMISSING Function The IFMISSING function writes out a specified value if the source value is a null or missing value. Otherwise, it writes the source value. Input can be a literal, a column reference, or a function.
IFMISMATCHED Function The IFMISMATCHED function writes out a specified value if the input expression does not match the specified data type or typing array. Otherwise, it writes the source value. Input can be a literal, a column reference, or a function.
IFVALID Function The IFVALID function writes out a specified value if the input expression matches the specified data type. Otherwise, it writes the source value. Input can be a literal, a column reference, or a function.
MERGE Function Merges two or more columns of String type to generate output of String type. Optionally, you can insert a delimiter between the merged values.

Source:

The following simple table lists zip codes by customer identifier:

custIdcustZip
C00198123
C00294105
C00312415
C00412451-2234
C00512441-298
C006 
C007 
C0081242
C0091104


Transformation:

When the above is imported into the Transformer page, you notice the following:

  • The custZip column is typed as Integer.
  • There are two missing and two mismatched values in the custZip column.

First, you test for valid values in the custZip column. Using the IFVALID function, you can validate against any data type:

Transformation Name New formula
Parameter: Formula type Single row formula
Parameter: Formula IFVALID(custZip, 'Zipcode', 'ok')
Parameter: New column name 'status'

Fix four-digit zips: In the status column are instances of ok for the top four rows. You notice that the bottom two rows contain four-digit codes.

Since the custZip values were originally imported as Integer, any leading 0 values are deleted. In this case, you can add back the leading zero. Before the previous step, change the data type of zip to String and insert the following:

Transformation Name New formula
Parameter: Formula type Single row formula
Parameter: Formula IF(LEN(custZip)==4,'0','')
Parameter: New column name 'FourDigitZip'

Transformation Name New formula
Parameter: Formula type Single row formula
Parameter: Formula MERGE([FourDigitZip,custZip])
Parameter: New column name 'custZip2'

Transformation Name Edit column with formula
Parameter: Columns zip
Parameter: Formula custZip2

Transformation Name Delete columns
Parameter: Columns FourDigitZip,custZip2
Parameter: Action Delete selected columns

Now, when you click the last recipe step, you should see that two more rows in status are listed as Ok.

For the zip code with the three-digit extension, you can simply remove that extension to make it valid. Click the step above the last one. In the data grid, highlight the value. Click the Replace suggestion card. Select the option that uses the following for the matching pattern:

'-{digit}{3}{end}'

The above means that all three-digit extensions are deleted from the zip. You can do the same for any two- and one-digit extensions, although there are none in this sample. 

Missing and null values: Now, you need to address how to handle missing and null values.  The IFMISSING tests for both missing and null values, while the IFNULL tests just for null values. In this example, you want to delete null values, which could mean that the data for that row is malformed and to write a status of missing for missing values.

Click above the last line in the recipe to insert the following:

Transformation Name Edit column with formula
Parameter: Columns custZip
Parameter: Formula IFNULL(custZip, 'xxxxx')

Transformation Name Edit column with formula
Parameter: Columns custZip
Parameter: Formula IFMISSING(custZip, '00000')

Now, when you click the last line of the recipe, only the null value is listed as having a status other than ok. You can use the following to remove this row and all like it:

Transformation Name Filter rows
Parameter: Condition Custom formula
Parameter: Type of formula Custom single
Parameter: Condition (status == 'xxxxx')
Parameter: Action Delete matching rows


Results:

custIdcustZipstatus
C00198123ok
C00294105ok
C00312415ok
C00412451-2234ok
C00512441-298ok
C006 00000ok
C0081242ok
C0091104ok

As an exercise, you might repeat the above steps starting with the IFMISMATCHED function determining the value in the status column:

Transformation Name New formula
Parameter: Formula type Single row formula
Parameter: Formula IFMISMATCHED(custZip, 'Zipcode', 'mismatched')
Parameter: New column name 'status'

See Also for EXAMPLE - IF Data Type Validation Functions:

 

This page has no comments.