On January 27, 2021, Google is changing the required permissions for attaching IAM roles to service accounts. If you are using IAM roles for your Google service accounts, please see Changes to User Management.
Contents:
Each argument can be a Decimal or Integer literal or a reference to a column containing numeric values.
Wrangle vs. SQL: This function is part of Wrangle , a proprietary data transformation language. Wrangle is not SQL. For more information, see Wrangle Language.
Basic Usage
Numeric literal example:
pow(10,3)
Output: Returns the value of 10 3, which is 1000
.
Column reference example:
pow(MyValue,2)
Output: Returns the value of the MyValue
column raised to the power of 2 (squared).
Syntax and Arguments
pow(base_numeric_value, exp_numeric_value)
Argument | Required? | Data Type | Description |
---|---|---|---|
base_numeric_value | Y | string, decimal, or integer | Name of column or Decimal or Integer literal that is the base value to be raised to the power of the second argument |
exp_numeric_value | Y | string, decimal, or integer | Name of column or Decimal or Integer literal that is the power to which to raise the base value |
For more information on syntax standards, see Language Documentation Syntax Notes.
base_numeric_value
Name of the column or numeric literal whose values are used as the bases for the exponential computation.
- Missing input values generate missing results.
- Literal numeric values should not be quoted.
- Multiple columns and wildcards are not supported.
Usage Notes:
Required? | Data Type | Example Value |
---|---|---|
Yes | String (column reference) or Integer or Decimal literal | 2.3 |
exp_numeric_value
Name of the column or numeric literal whose values are used as the power to which the base-numeric value is raised.
- Missing input values generate missing results.
- Literal numeric values should not be quoted.
- Multiple columns and wildcards are not supported.
Usage Notes:
Required? | Data Type | Example Value |
---|---|---|
Yes | String (column reference) or Integer or Decimal literal | 5 |
Tip: For additional examples, see Common Tasks.Examples
Example - Exponential functions
EXP
- ex . See EXP Function.LN
- natural logarithm of the above. See LN Function.LOG
- 10x. See LOG Function.POW
- XY. The value X raised to the power Y. See POW Function.
Source:
rowNum | X |
---|---|
1 | -2 |
2 | 1 |
3 | 0 |
4 | 1 |
5 | 2 |
6 | 3 |
7 | 4 |
8 | 5 |
Transformation:
Transformation Name | New formula |
---|---|
Parameter: Formula type | Single row formula |
Parameter: Formula | EXP (X) |
Parameter: New column name | 'expX' |
Transformation Name | New formula |
---|---|
Parameter: Formula type | Single row formula |
Parameter: Formula | LN (expX) |
Parameter: New column name | 'ln_expX' |
Transformation Name | New formula |
---|---|
Parameter: Formula type | Single row formula |
Parameter: Formula | LOG (X) |
Parameter: New column name | 'logX' |
Transformation Name | New formula |
---|---|
Parameter: Formula type | Single row formula |
Parameter: Formula | POW (10,logX) |
Parameter: New column name | 'pow_logX' |
Results:
In the following, (null value)
indicates that a null value is generated for the computation.
rowNum | X | expX | ln_expX | logX | pow_logX |
---|---|---|---|---|---|
1 | -2 | 0.1353352832366127 | -2 | (null value) | (null value) |
2 | -1 | 0.1353352832366127 | -0.9999999999999998 | (null value) | (null value) |
3 | 0 | 1 | 0 | (null value) | 0 |
4 | 1 | 2.718281828459045 | 1 | 0 | 1 |
5 | 2 | 7.3890560989306495 | 2 | 0.30102999566398114 | 1.9999999999999998 |
6 | 3 | 20.085536923187668 | 3 | 0.47712125471966244 | 3 |
7 | 4 | 54.59815003314423 | 4 | 0.6020599913279623 | 3.999999999999999 |
8 | 5 | 148.41315910257657 | 5 | 0.6989700043360187 | 4.999999999999999 |
Example - Pythagorean Theorem
POW
and SQRT
functions work together to compute the hypotenuse of a right triangle using the Pythagorean theorem.POW
- X Y . In this case, 10 to the power of the previous one. See POW Function .SQRT
- computes the square root of the input value. See SQRT Function.
The Pythagorean theorem states that in a right triangle the length of each side (x,y) and of the hypotenuse (z) can be represented as the following:
z2 = x 2 + y 2
Therefore, the length of z can be expressed as the following:
z = sqrt(x 2 + y 2 )
Source:
The dataset below contains values for x and y:
X | Y |
---|---|
3 | 4 |
4 | 9 |
8 | 10 |
30 | 40 |
Transformation:
You can use the following transformation to generate values for z2.
NOTE: Do not add this step to your recipe right now.
Transformation Name | New formula |
---|---|
Parameter: Formula type | Single row formula |
Parameter: Formula | (POW(x,2) + POW(y,2)) |
Parameter: New column name | 'Z' |
You can see how column Z is generated as the sum of squares of the other two columns, which yields z2.
Now, edit the transformation to wrap the value computation in a SQRT
function. This step is done to compute the value for z, which is the distance between the two points based on the Pythagorean theorem.
Transformation Name | New formula |
---|---|
Parameter: Formula type | Single row formula |
Parameter: Formula | SQRT((POW(x,2) + POW(y,2))) |
Parameter: New column name | 'Z' |
Results:
X | Y | Z |
---|---|---|
3 | 4 | 5 |
4 | 9 | 9.848857801796104 |
8 | 10 | 12.806248474865697 |
30 | 40 | 50 |
This page has no comments.