Computes the mode (most frequent value) from all row values in a column, according to their grouping. Input column can be of Integer or Decimal type.
- If a row contains a missing or null value, it is not factored into the calculation. If the entire column contains no values, the function returns a null v alue.
- If there is a tie in which the most occurrences of a value is shared between values, then no value is returned from the function.
- When used in a
pivot
transform, the function is computed for each instance of the value specified in thegroup
parameter. See Pivot Transform.
For a version of this function computed over a rolling window of rows, see ROLLINGMODE Function.
Basic Usage
pivot value:MODE(count_visits) group:postal_code limit:1
Output: Generates a two-column table containing the unique values from the postal_code
column and the mode of the values in the count_visits
column for the postal_code
value. The limit
parameter defines the maximum number of output columns.
Syntax and Arguments
pivot value:MODE(function_col_ref) [group:group_col_ref] [limit:limit_count]
Argument | Required? | Data Type | Description |
---|---|---|---|
function_col_ref | Y | string | Name of column to which to apply the function |
For more information on the group
and limit
parameters, see Pivot Transform.
For more information on syntax standards, see Language Documentation Syntax Notes.
function_col_ref
Name of the column the values of which you want to calculate the function. Column must contain Integer or Decimal values.
- Literal values are not supported as inputs.
- Multiple columns and wildcards are not supported.
Usage Notes:
Required? | Data Type | Example Value |
---|---|---|
Yes | String (column reference) | myValues |
Tip: For additional examples, see Common Tasks.
Examples
Example - Statistics on Test Scores
Source: Students took a test and recorded the following scores. You want to perform some statistical analysis on them: Transform: You can use the following transforms to calculate the average (mean), minimum, and maximum scores: To apply statistical functions to your data, you can use the For each score, you can now calculate the variation of each one from the average, using the following: Now, you want to apply grades based on a formula: You can build the following transform using the For more information, see IF Function. To clean up the content, you might want to apply some formatting to the score columns. The following reformats the Results: 87.00000000000001Student Score Anna 84 Ben 71 Caleb 76 Danielle 87 Evan 85 Faith 92 Gabe 85 Hannah 99 Ian 73 Jane 68 derive type:single value:AVERAGE(Score) as:'avgScore'
derive type:single value:MIN(Score) as:'minScore'
derive type:single value:MAX(Score) as:'maxScore'
VAR
and STDEV
functions, which can be used as the basis for other statistical calculations.derive type:single value:VAR(Score)
derive type:single value:STDEV(Score)
derive type:single value:((Score - avg_Score) / stdev_Score) as:'stDevs'
Grade standard deviations from avg (stDevs) A stDevs > 1 B stDevs > 0.5 C -1 <= stDevs <= 0.5 D stDevs < -1 F stDevs < -2 IF
function to calculate grades.derive type:single value:IF((stDevs > 1),'A',IF((stDevs < -2),'F',IF((stDevs < -1),'D',IF((stDevs > 0.5),'B','C'))))
stdev_Score
and stDevs
columns to display two decimal places:set col:stdev_Score value:NUMFORMAT(stdev_Score, '##.00')
set col:stDevs value:NUMFORMAT(stDevs, '##.00')
derive type:single value:MODE(Score) as:'modeScore'
Student Score modeScore avgScore minScore maxScore var_Score stdev_Score stDevs Grade Anna 84 85 82 68 99 9.33 0.21 C Ben 71 85 82 68 99 87.00000000000001 9.33 -1.18 D Caleb 76 85 82 68 99 87.00000000000001 9.33 -0.64 C Danielle 87 85 82 68 99 87.00000000000001 9.33 0.54 B Evan 85 85 82 68 99 87.00000000000001 9.33 0.32 C Faith 92 85 82 68 99 87.00000000000001 9.33 1.07 A Gabe 85 85 82 68 99 87.00000000000001 9.33 0.32 C Hannah 99 85 82 68 99 87.00000000000001 9.33 1.82 A Ian 73 85 82 68 99 87.00000000000001 9.33 -0.96 C Jane 68 85 82 68 99 87.00000000000001 9.33 -1.50 D
This page has no comments.