The
ISMISSING
function tests whether a column of values is missing or null. For input column references, this function returns true
or false
.- You can define a conditional test in a single step for valid values. See IFMISSING Function.
- Missing values are different from null values. To test for the presence of null values exclusively, see ISNULL Function.
Basic Usage
ismissing(Qty)
Output: Returns true
if the value in the Qty
column is missing.
Syntax and Arguments
ismissing(column_string)
Argument | Required? | Data Type | Description |
---|---|---|---|
column_string | Y | string | Name of column or string literal to be applied to the function |
For more information on syntax standards, see Language Documentation Syntax Notes.
column_string
Name of the column or string literal to be tested for missing values.
- Missing literals or column values generate missing string results.
- Multiple columns are supported.
- Wildcards are not supported.
Usage Notes:
Required? | Data Type | Example Value |
---|---|---|
Yes | String literal or column reference | myColumn |
Tip: For additional examples, see Common Tasks.
Examples
Example - Type check functions
ISVALID
- Returnstrue
if the input matches the specified data type. See VALID Function.ISMISMATCHED
- Returnstrue
if the input does not match the specified data type. See ISMISMATCHED Function.ISMISSING
- Returnstrue
if the input value is missing. See ISMISSING Function.ISNULL
- Returnstrue
if the input value is null. See ISNULL Function.NULL
- Generates a null value. See NULL Function.
Source:
Some source values that should match the State and Integer data types:
State | Qty |
---|---|
CA | 10 |
OR | -10 |
WA | 2.5 |
ZZ | 15 |
ID | |
4 |
Transformation:
Invalid State values: You can test for invalid values for State using the following:
Transformation Name | New formula |
---|---|
Parameter: Formula type | Single row formula |
Parameter: Formula | ISMISMATCHED (State, 'State') |
The above transform flags rows 4 and 6 as mismatched.
NOTE: A missing value is not valid for a type, including String type.
Invalid Integer values: You can test for valid matches for Qty using the following:
Transformation Name | New formula |
---|---|
Parameter: Formula type | Single row formula |
Parameter: Formula | (ISVALID (Qty, 'Integer') && (Qty > 0)) |
Parameter: New column name | 'valid_Qty' |
The above transform flags as valid all rows where the Qty
column is a valid integer that is greater than zero.
Missing values: The following transform tests for the presence of missing values in either column:
Transformation Name | New formula |
---|---|
Parameter: Formula type | Single row formula |
Parameter: Formula | (ISMISSING(State) || ISMISSING(Qty)) |
Parameter: New column name | 'missing_State_Qty' |
After re-organizing the columns using the move
transform, the dataset should now look like the following:
State | Qty | mismatched_State | valid_Qty | missing_State_Qty |
---|---|---|---|---|
CA | 10 | false | true | false |
OR | -10 | false | false | false |
WA | 2.5 | false | false | false |
ZZ | 15 | true | true | false |
ID | false | false | true | |
4 | false | true | true |
Since the data does not contain null values, the following transform generates null values based on the preceding criteria:
Transformation Name | New formula |
---|---|
Parameter: Formula type | Single row formula |
Parameter: Formula | ((mismatched_State == 'true') || (valid_Qty == 'false') || (missing_State_Qty == 'true')) ? NULL() : 'ok' |
Parameter: New column name | 'status' |
You can then use the ISNULL
check to remove the rows that fail the above test:
Transformation Name | Filter rows |
---|---|
Parameter: Condition | Custom formula |
Parameter: Type of formula | Custom single |
Parameter: Condition | ISNULL('status') |
Parameter: Action | Delete matching rows |
Results:
Based on the above tests, the output dataset contains one row:
State | Qty | mismatched_State | valid_Qty | missing_State_Qty | status |
---|---|---|---|---|---|
CA | 10 | false | true | false | ok |
This page has no comments.