Escaping Strings in Transformations

This section describes how to escape strings in your transformations.

In the platform, the backslash character (\ ) is used to escape values within strings. The character following the
escaping character is treated as a string literal.

For example, the following value is used to represent a matching value of & only:
&

Escaping can be applied to parameters in functions. For example, in the data grid, you have the following values
in a column:

MyStringCol
This works.
You can't break this.

Not broken yet.

To find the value can' t, you could enter the following pattern:

Transformation Name New formul a

Parameter: Formula type Single row formul a

Parameter: Formula FIND(MyStringCol, 'can\'t', true, 0)
Parameter: New column " MyFi ndResul t s’

name

The above transformation results in the following:

MyStringCol MyFindResults
This works.
You can't break this. 4

Not broken yet.

All pattern type markers can be escaped if using the marking character in a string:

Pattern type Marker Escaped character
literal value ' \!
Pattern ) \°
Regular expression | / \/

A note on JSON:

In the data grid, JSON Objects and arrays include additional escaping to show that the values are strings. For
example, the data grid shows:

{"re\"becca","hello"}

Copyright © 2020 Trifacta Inc. Page #1



The first JISON element displayed in the GUl is r e\ " becca, but the desired match is r e" becca.

Tip: For best results in pattern matching, you should make selections in the data grid and modify if
necessary.

Below, you can see how this JSON pattern is specified in the following example transformation:

Transformation Name Pi vot col ums

Parameter: Column My Col

Parameter: Paths to elements [\ "re\\\"becca\"]

The keys value must be single-quoted. Since the keys are specified for Object data, the square bracket
notation is used.

® Within the square brackets, the individual keys must be double-quoted.
® The first two backslashes (A \ ) indicate that you are escaping a single backslash character.
® The third backslash indicates that you are escaping the double-quote that is part of the string to match.

In the following example, you are trying to match on the above string, including the double-quotes around it: " r e\

"becca".
Transformation Name Pi vot col unms
Parameter: Column My Col

Parameter: Paths to elements ' [\"re\\\"becca\ "]’

The bracketing double-quotes must be escaped, too.

Copyright © 2020 Trifacta Inc. Page #2



	Escaping Strings in Transformations

