
Copyright © 2018 Trifacta Inc. Page #1

ARRAYZIP Function
Contents:

Basic Usage
Syntax and Arguments

array_ref1, array_ref2
Examples

Example - Simple ARRAYZIP example
Example - Unnest an array

Combines multiple arrays into a single nested array, with element 1 of array 1 paired with element 2 of array 2
and so on. Arrays are expressed as column names or as array literals.

If the arrays are of different length, then null values are inserted for combinations where one array is missing a
corresponding value.

Basic Usage

Array literal reference example:

derive value:ARRAYZIP([)type:single ["A","B","C"],["1","2","3"]]

 Generates a nested array combining elements from the two source arrays.Output:

Column reference example:

derive value:ARRAYZIP([array1,array2]) as:'zippedArray'type:single

 Generates a new column containing a single nested array pairing the elements of the Output: zippedArray

array in the listed order of the arrays.

Syntax and Arguments

derive value: (array_ref1,array_ref2)type:single ARRAYZIP

Argument Required? Data Type Description

array_ref1 Y string or array Name of first column or first array literal to apply to the function

array_ref2 Y string or array Name of second column or second array literal to apply to the function

For more information on syntax standards, see .Language Documentation Syntax Notes

array_ref1, array_ref2

Array literal or name of the array column whose elements you want to combine together.

Usage Notes:

Required? Data Type Example Value

Yes Array literal or column reference myArray1, myArray2

https://docs.trifacta.com/display/r051/Language+Documentation+Syntax+Notes

Copyright © 2018 Trifacta Inc. Page #2

1.
2.

Examples

Example - Simple ARRAYZIP example

Source:

Item Letters Numerals

Item1 ["A","B","C"] ["1","2","3"]

Item2 ["D","E","F"] ["4","5","6"]

Item3 ["G","H","I"] ["7","8","9"]

Transform:

derive value:ARRAYZIP([Letters,Numerals]) as:'LettersAndNumerals'type:single

Results:

Item Letters Numerals LettersAndNumerals

Item1 ["A","B","C"] ["1","2","3"] [["A","1"],["B",2"],["C","3"]]

Item2 ["D","E","F"] ["4","5","6"] [["F","4"],["G",5"],["H","6"]]

Item3 ["G","H","I"] ["7","8","9"] [["G","7"],["H",8"],["I","9"]]

Example - Unnest an array

Source:

You have the following data on student test scores. Scores on individual scores are stored in the array, Scores
and you need to be able to track each test on a uniquely identifiable row. This example has two goals:

One row for each student test
Unique identifier for each student-score combination

LastName FirstName Scores

Adams Allen [81,87,83,79]

Burns Bonnie [98,94,92,85]

Cannon Charles [88,81,85,78]

Transform:

When the data is imported from CSV format, you must add a transform and remove the quotes from the header S
 column:cores

header

replace col:Scores with:'' on:`"` global:true

Tip: For additional examples, see .Common Tasks

https://docs.trifacta.com/display/r051/Common+Tasks

Copyright © 2018 Trifacta Inc. Page #3

Validate test date: To begin, you might want to check to see if you have the proper number of test scores for
each student. You can use the following transform to calculate the difference between the expected number of
elements in the array (4) and the actual number:Scores

derive value: (4 - ARRAYLEN(Scores)) as: 'numMissingTests'type:single

When the transform is previewed, you can see in the sample dataset that all tests are included. You might or
might not want to include this column in the final dataset, as you might identify missing tests when the recipe is
run at scale.

Unique row identifier: The array must be broken out into individual rows for each test. However, there Scores
is no unique identifier for the row to track individual tests. In theory, you could use the combination of LastName-

values to do so, but if a student recorded the same score twice, your dataset has duplicate FirstName-Scores
rows. In the following transform, you create a parallel array called , which contains an index array for the Tests
number of values in the column. Index values start at :Scores 0

derive value:RANGE(0,ARRAYLEN(Scores)) as:'Tests'type:single

Also, we will want to create an identifier for the source row using the function:SOURCEROWNUMBER

derive value:SOURCEROWNUMBER() as:'orderIndex'type:single

One row for each student test: Your data should look like the following:

LastName FirstName Scores Tests orderIndex

Adams Allen [81,87,83,79] [0,1,2,3] 2

Burns Bonnie [98,94,92,85] [0,1,2,3] 3

Cannon Charles [88,81,85,78] [0,1,2,3] 4

Now, you want to bring together the and arrays into a single nested array using the Tests Scores ARRAYZIP
function:

derive value:ARRAYZIP([Tests,Scores])type:single

Your dataset has been changed:

LastName FirstName Scores Tests orderIndex column1

Adams Allen [81,87,83,79] [0,1,2,3] 2 [[0,81],[1,87],[2,83],[3,79]]

Adams Bonnie [98,94,92,85] [0,1,2,3] 3 [[0,98],[1,94],[2,92],[3,85]]

Cannon Charles [88,81,85,78] [0,1,2,3] 4 [[0,88],[1,81],[2,85],[3,78]]

With the transform, you can unpack the nested array:flatten

flatten col: column1

Each test-score combination is now broken out into a separate row. The nested Test-Score combinations must
be broken out into separate columns using :unnest

unnest col:column1 keys:'[0]','[1]'

After you drop , which is no longer needed you should rename the two generated columns:column1

rename mapping:[column_0,'TestNum']

Copyright © 2018 Trifacta Inc. Page #4

rename mapping:[column_1,'TestScore']

Unique row identifier: You can do one more step to create unique test identifiers, which identify the specific test
for each student. The following uses the original row identifier as an identifier for the student and OrderIndex
the value to create the column value:TestNumber TestId

derive value: (orderIndex * 10) + TestNum as: 'TestId'type:single

The above are integer values. To make your identifiers look prettier, you might add the following:

merge col:'TestId00','TestId'

Extending: You might want to generate some summary statistical information on this dataset. For example, you
might be interested in calculating each student's average test score. This step requires figuring out how to
properly group the test values. In this case, you cannot group by the value, and when executed at LastName
scale, there might be collisions between first names when this recipe is run at scale. So, you might need to create
a kind of primary key using the following:

merge col:'LastName','FirstName' with:'-' as:'studentId'

You can now use this as a grouping parameter for your calculation:

derive value:AVERAGE(TestScore) group:studentId as:'avg_TestScore'type:single

Results:

After you drop unnecessary columns and move your columns around, the dataset should look like the following:

TestId LastName FirstName TestNum TestScore studentId avg_TestScore

TestId0021 Adams Allen 0 81 Adams-Allen 82.5

TestId0022 Adams Allen 1 87 Adams-Allen 82.5

TestId0023 Adams Allen 2 83 Adams-Allen 82.5

TestId0024 Adams Allen 3 79 Adams-Allen 82.5

TestId0031 Adams Bonnie 0 98 Adams-Bonnie 92.25

TestId0032 Adams Bonnie 1 94 Adams-Bonnie 92.25

TestId0033 Adams Bonnie 2 92 Adams-Bonnie 92.25

TestId0034 Adams Bonnie 3 85 Adams-Bonnie 92.25

TestId0041 Cannon Chris 0 88 Cannon-Chris 83

TestId0042 Cannon Chris 1 81 Cannon-Chris 83

TestId0043 Cannon Chris 2 85 Cannon-Chris 83

TestId0044 Cannon Chris 3 78 Cannon-Chris 83

	ARRAYZIP Function

