Date: Fri, 7 May 2021 06:34:14 +0000 (GMT) Message-ID: <542570626.5383.1620369254290@6a789edf488b> Subject: Exported From Confluence MIME-Version: 1.0 Content-Type: multipart/related; boundary="----=_Part_5382_1306298267.1620369254290" ------=_Part_5382_1306298267.1620369254290 Content-Type: text/html; charset=UTF-8 Content-Transfer-Encoding: quoted-printable Content-Location: file:///C:/exported.html EXAMPLE - POW and SQRT Functions

# EXAMPLE - POW and SQRT Functions

The following example demonstrates how the `POW`=  and `SQRT` functions work together to compute the hyp= otenuse of a right triangle using the Pythagorean theorem.

• `POW` - X Y . In this case, 1= 0 to the power of the previous one. See POW Function
• `SQRT` - computes the square root of the input value. See SQRT Function.

The Pythagorean theorem states that in a right triangle the length of ea= ch side (x,y) and of the hypotenuse (z) can be represented as the following= :

z2 =3D x 2 + y 2

Therefore, the length of z can be expressed as the following:

z =3D sqrt(x 2  + y 2 <= /em>)

The dataset below contains values for x and y:

X Y
3 4
4 9
8 10
30 40

Transform:

You can use the following transform to generate values for z2= .

derive type:single value:(POW(x,2) += POW(y,2)) as:'Z'

You can see how column Z is generated as the su= m of squares of the other two columns. Now, wrap the value computation in a=   `SQRT` function:=20

derive type:single value:SQRT(= (POW(x,2) + POW(y,2))) as: 'Z'

Results:

X Y Z
3 4 5
4 9 9.848857801796104
8 10 12.806248474865697
30 40 50
------=_Part_5382_1306298267.1620369254290--