D toc |
---|
Excerpt |
---|
For smaller datasets, the Transformer page displays the entire dataset. For larger ones, the source data is sampled for use in the Transformer page. Through the Samples panel, you can create new samples and select them for display in the Transformer page. |
At the top of the Transformer page, the type of the current sample is displayed next to the dataset name. To open the Samples panel, click the current sample indicator:
D caption | ||
---|---|---|
| ||
Click the current sample button. |
In the example above, you can see that the current sample is a Random sample.
- Full Data: The entire dataset is small enough to be displayed in the data grid. The data is not sampled.
Initial Sample: The sample is taken from the first set of rows in the first file or table that is part of the dataset. Data from the rest of the first file or table or from other files or tables is not included in the data grid.
Tip Tip: For purposes of loading the data, the initial sample is generated and displayed at first. For a better representation of the entire dataset, you should create a new sample.
To create a new sample, click Collect a new sample.
The Samples panel is displayed on the right side of the screen:
Tip |
---|
Tip: You can also open the Samples panel by clicking the Eyedropper icon at the top of the page. |
D caption | ||
---|---|---|
| ||
Samples Panel |
Current sample:
At the top of the panel, you can review the currently loaded sample. Each user has his own active sample on a dataset.
Info |
---|
NOTE: When a new sample is generated, any Sort transformations that have been applied previously must be re-applied. Depending on the type of output, sort order may not be preserved. |
Initial: By default, the application loads the first N rows of the dataset as the initial sample when the Transformer page is opened. The number of rows depends on column count, data density, and other factors. If the dataset is small enough, the full dataset is used.
Info NOTE: By default, samples may be up to 10 MB in size. For datasets smaller than this limit, the entire dataset is loaded.
Click the link in the current sample card to see the list of all available samples.
Tip Tip: To change the name of a sample, click its card in the list of all available. Then, click the Edit icon.
New samples:
Below the current sample, you can review the available options for creating new samples. Each type of sample reflects a different method of collection.
D s sampling |
---|
To collect a new sample, click the appropriate sample card. See below.
- After a sample is created, you can load it at any time, as long as it is still valid. Next to a collected sample, click Load sample.
- For more information on sampling methods, see Overview of Sampling.
Status bar:
At the bottom of the Transformer page, you can review the number of rows and columns and count of data types in the currently displayed sample.
Info |
---|
NOTE: As you add transformation steps to your recipe, the values in the status bar change to reflect the current state of the loaded sample. |
Info |
---|
NOTE: Some operations, such as |
Collect new sample
When a new sample is collected, it is gathered based on the current location in the recipe when the sample is gathered. So, if the recipe contains steps that join in other datasets, those joins are performed to bring together the data from which the sample is executed.
D caption | ||
---|---|---|
| ||
Collect new sample panel |
Info |
---|
NOTE: Except for the initial sample, all samples are generated based on the steps leading up to the location of the cursor in the recipe. If earlier steps are deleted or modified, the collected sample can be invalidated. |
Info |
---|
NOTE: When sampling from compressed data, the source is uncompressed, and a new sample of it is loaded into the data grid. As a result, the sample size you see in the grid corresponds to the uncompressed data. |
Steps:
- In the Samples panel, select the type of sample to create. For more information on sample types, see Overview of Sampling.
- In the Collect new sample panel, specify the following parameters, some of which may not be required for your sampling method:
- Choose a sampling method: Select or enter the type of sample. If you already selected a sampling method, this value is pre-populated for you.
Name: You can enter a new name of the sample as needed.
Tip Tip: Naming your samples can assist in tracking them later. For example, you might choose to add a date stamp to the name to track when you captured the sample.
- Column or columns: (Stratified, Cluster-based) Name of the column from which to gather values to evaluate (Anomaly-based) Specify the name or names of one or more columns containing the anomalies to include in your sample. Multiple columns can be specified by comma-separated values. A column range can be specified using the tilde (
~
) character.
Condition: (Filter-based, Stratified, Cluster-based, Anomaly-based) Filter the sample based on a specified condition. For example:
Code Block invoiceDate > 90
- Anomaly type:(Anomaly-based) Select the type of anomalous values to include in your sample: invalid, missing, or both types.
- To begin collecting the sample, click Collect.
- You can continue working while the sample is collected. When the sample is available, a status message is displayed in the Transformer page.
- You can click Load Sample in the Samples panel to begin using it.
Collected samples
In the Collected samples panel, you can review the available and unavailable samples. If applicable, you can review the variable override values that were applied during the sampling.
To use one of the available samples, select its card. The sample is loaded in the data grid.
Info |
---|
NOTE: If you add recipe steps that change the number of rows in your dataset (or a few other edge case steps), some of your existing samples may no longer be valid. When you execute a join, union, or delete action or edit steps before this action, you may be prompted with the Change Recipe dialog, which includes the following message: Your change will invalidate some of the currently available samples for this source. The invalid samples will be deactivated. For more information on the types of transformations that can invalidate samples, see Reshaping Steps. |
To delete a sample, click the X icon in the corner.