Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.
Comment: Published by Scroll Versions from space DEV and version r092
Excerpt

This example illustrates how to apply hyperbolic trigonometric functions to your transformations. All of the functions take inputs in radians.

Functions:

D generate list excerpts
pagesSINH Function,COSH Function,TANH Function

The following functions can be computed based on the inverse of the above functions:

  • Hyperbolic Cotangent. Computed as 1/TANH.
  • Hyperbolic Secant. Computed as 1/COSH.
  • Hyperbolic Cosecant. Computed as 1/SINH. 

Also:

D generate list excerpts
pagesROUND Function,RADIANS Function,DIVIDE Function

Source:

In the following sample, input values are in degrees:

X
-30
0
30
45
60
90
120
135
180


Transformation:

In this example, all values are rounded to three decimals for clarity.

First, the above values in degrees must be converted to radians. 

D trans
RawWrangletrue
p03Value'rX'
Typestep
WrangleTextderive type: single value: round(radians(X), 3) as: 'rX'
p01NameFormula type
p01ValueSingle row formula
p02NameFormula
p02Valueround(radians(X), 3)
p03NameNew column name
SearchTermNew formula

Hyperbolic Sine:

D trans
RawWrangletrue
p03Value'SINHrX'
Typestep
WrangleTextderive type: single value: round(sinh(rX), 3) as: 'SINHrX'
p01NameFormula type
p01ValueSingle row formula
p02NameFormula
p02Valueround(sinh(rX), 3)
p03NameNew column name
SearchTermNew formula

Hyperbolic Cosine:

D trans
RawWrangletrue
p03Value'COSHrX'
Typestep
WrangleTextderive type: single value: round(cosh(rX), 3) as: 'COSHrX'
p01NameFormula type
p01ValueSingle row formula
p02NameFormula
p02Valueround(cosh(rX), 3)
p03NameNew column name
SearchTermNew formula

Hyperbolic Tangent:

D trans
RawWrangletrue
p03Value'TANHrX'
Typestep
WrangleTextderive type: single value: round(tanh(rX), 3) as: 'TANHrX'
p01NameFormula type
p01ValueSingle row formula
p02NameFormula
p02Valueround(tanh(rX), 3)
p03NameNew column name
SearchTermNew formula

Hyperbolic Cotangent:

D trans
RawWrangletrue
p03Value'COTHrX'
Typestep
WrangleTextderive type: single value: round(divide(1, tanh(rX)), 3) as: 'COTHrX'
p01NameFormula type
p01ValueSingle row formula
p02NameFormula
p02Valueround(divide(1, tanh(rX)), 3)
p03NameNew column name
SearchTermNew formula

Hyperbolic Secant:

D trans
RawWrangletrue
p03Value'SECHrX'
Typestep
WrangleTextderive type: single value: round(divide(1, cosh(rX)), 3) as: 'SECHrX'
p01NameFormula type
p01ValueSingle row formula
p02NameFormula
p02Valueround(divide(1, cosh(rX)), 3)
p03NameNew column name
SearchTermNew formula

Hyperbolic Cosecant:

D trans
RawWrangletrue
p03Value'CSCHrX'
Typestep
WrangleTextderive type: single value: round(divide(1, sinh(rX)), 3) as: 'CSCHrX'
p01NameFormula type
p01ValueSingle row formula
p02NameFormula
p02Valueround(divide(1, sinh(rX)), 3)
p03NameNew column name
SearchTermNew formula


Results:

XrXTANHrXCOTHrXCOSHrXSECHrXSINHrXCSCHrX
-30-0.524-0.481-2.0791.140.877-0.548-1.825
000null110null
300.5240.4812.0791.140.8770.5481.825
450.7850.6561.5241.3240.7550.8681.152
601.0470.7811.281.60.6251.2490.801
901.5710.9171.0912.510.3982.3020.434
1202.0940.971.0314.120.2433.9970.25
1352.3560.9821.0185.3220.1885.2270.191
1803.1420.9961.00411.5970.08611.5530.087

D s also
labelexample_trigonometry_hyperbolic_functions