Page tree

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 2 Next »


NOTE:  Designer Cloud Educational is a free product with limitations on its features. Some features in the documentation do not apply to this product edition. See Product Limitations.



Combines multiple arrays into a single nested array, with element 1 of array 1 paired with element 2 of array 2 and so on. Arrays are expressed as column names or as array literals.

If the arrays are of different length, then null values are inserted for combinations where one array is missing a corresponding value.

Basic Usage

Array literal reference example:

derive type:single value:ARRAYZIP([["A","B","C"],["1","2","3"]])

Output: Generates a nested array combining elements from the two source arrays. 

Column reference example:

derive type:single value:ARRAYZIP([array1,array2]) as:'zippedArray'

Output: Generates a new zippedArray column containing a single nested array pairing the elements of the array in the listed order of the arrays

Syntax and Arguments

derive type:single value:ARRAYZIP(array_ref1,array_ref2)

ArgumentRequired?Data TypeDescription
array_ref1Ystring or arrayName of first column or first array literal to apply to the function
array_ref2Ystring or arrayName of second column or second array literal to apply to the function

For more information on syntax standards, see Language Documentation Syntax Notes.

array_ref1, array_ref2

Array literal or name of the array column whose elements you want to combine together.

Usage Notes:

Required?Data TypeExample Value
YesArray literal or column referencemyArray1, myArray2


Tip: For additional examples, see Common Tasks.

Example - Simple ARRAYZIP example




derive type:single value:ARRAYZIP([Letters,Numerals]) as:'LettersAndNumerals'



Example - Unnest an array

This example illustrates you to use the flatten and unnest transforms.


You have the following data on student test scores. Scores on individual scores are stored in the Scores array, and you need to be able to track each test on a uniquely identifiable row. This example has two goals:

  1. One row for each student test
  2. Unique identifier for each student-score combination




When the data is imported from CSV format, you must add a header transform and remove the quotes from the Scores column:

Transformation Name Rename column with row(s)
Parameter: Option Use row(s) as column names
Parameter: Type Use a single row to name columns
Parameter: Row number 1

Transformation Name Replace text or pattern
Parameter: Column colScores
Parameter: Find '\"'
Parameter: Replace with ''
Parameter: Match all occurrences true

Validate test date: To begin, you might want to check to see if you have the proper number of test scores for each student. You can use the following transform to calculate the difference between the expected number of elements in the Scores array (4) and the actual number:

Transformation Name New formula
Parameter: Formula type Single row formula
Parameter: Formula (4 - arraylen(Scores))
Parameter: New column name 'numMissingTests'

When the transform is previewed, you can see in the sample dataset that all tests are included. You might or might not want to include this column in the final dataset, as you might identify missing tests when the recipe is run at scale.

Unique row identifier: The Scores array must be broken out into individual rows for each test. However, there is no unique identifier for the row to track individual tests. In theory, you could use the combination of LastName-FirstName-Scores values to do so, but if a student recorded the same score twice, your dataset has duplicate rows. In the following transform, you create a parallel array called Tests, which contains an index array for the number of values in the Scores column. Index values start at 0:

Transformation Name New formula
Parameter: Formula type Single row formula
Parameter: Formula range(0,arraylen(Scores))
Parameter: New column name 'Tests'

Also, we will want to create an identifier for the source row using the sourcerownumber function:

Transformation Name New formula
Parameter: Formula type Single row formula
Parameter: Formula sourcerownumber()
Parameter: New column name 'orderIndex'

One row for each student test: Your data should look like the following:


Now, you want to bring together the Tests and Scores arrays into a single nested array using the arrayzip function:

Transformation Name New formula
Parameter: Formula type Single row formula
Parameter: Formula arrayzip([Tests,Scores])

Your dataset has been changed:


Use the following to unpack the nested array:

Transformation Name Expand arrays to rows
Parameter: Column column1

Each test-score combination is now broken out into a separate row. The nested Test-Score combinations must be broken out into separate columns using the following:

Transformation Name Unnest Objects into columns
Parameter: Column column1
Parameter: Paths to elements '[0]','[1]'

After you delete column1, which is no longer needed you should rename the two generated columns:

Transformation Name Rename columns
Parameter: Option Manual rename
Parameter: Column column_0
Parameter: New column name 'TestNum'

Transformation Name Rename columns
Parameter: Option Manual rename
Parameter: Column column_1
Parameter: New column name 'TestScore'

Unique row identifier: You can do one more step to create unique test identifiers, which identify the specific test for each student. The following uses the original row identifier OrderIndex as an identifier for the student and the TestNumber value to create the TestId column value:

Transformation Name New formula
Parameter: Formula type Single row formula
Parameter: Formula (orderIndex * 10) + TestNum
Parameter: New column name 'TestId'

The above are integer values. To make your identifiers look prettier, you might add the following:

Transformation Name Merge columns
Parameter: Columns 'TestId00','TestId'

Extending: You might want to generate some summary statistical information on this dataset. For example, you might be interested in calculating each student's average test score. This step requires figuring out how to properly group the test values. In this case, you cannot group by the LastName value, and when executed at scale, there might be collisions between first names when this recipe is run at scale. So, you might need to create a kind of primary key using the following:

Transformation Name Merge columns
Parameter: Columns 'LastName','FirstName'
Parameter: Separator '-'
Parameter: New column name 'studentId'

You can now use this as a grouping parameter for your calculation:

Transformation Name New formula
Parameter: Formula type Single row formula
Parameter: Formula average(TestScore)
Parameter: Group rows by studentId
Parameter: New column name 'avg_TestScore'


After you delete unnecessary columns and move your columns around, the dataset should look like the following:


See Also for EXAMPLE - Flatten and Unnest Transforms:

See Also for ARRAYZIP Function:

Error rendering macro 'contentbylabel'

parameters should not be empty


  • No labels

This page has no comments.