Contents:
Flow Structure and Objects
Within Trifacta® Wrangler, the basic unit for organizing your work is the flow. The following diagram illustrates the component objects of a flow and how they are related:
Figure: Objects in a Flow
Flow
A flow is a container for holding one or more imported datasets, associated recipes and other objects. This container is a means for packaging Trifacta objects for the following types of actions:
Creating relationships between datasets, their recipes, and other datasets.
- Copying
Execution of pre-configured jobs
- Creating references between recipes and external flows
Imported Dataset
Data that is imported to the platform is referenced as an imported dataset. An imported dataset is simply a reference to the original data; the data does not exist within the platform. An imported dataset can be a reference to a file, multiple files, database table, or other type of data.
NOTE: An imported dataset is a pointer to a source of data. It cannot be modified or stored within Trifacta Wrangler.
NOTE: External sources of data are not supported in Trifacta Wrangler. All sources must be uploaded files.
- An imported dataset can be referenced in recipes.
- Imported datasets are created through the Import Data Page.
- For more information on the process, see Import Basics.
After you have created an imported dataset, it becomes usable after it has been added to a flow. You can do this as part of the import process or later.
Recipe
A recipe is a user-defined sequence of steps that can be applied to transform a dataset.
- A recipe object is created from an imported dataset or another recipe. You can create a recipe from a recipe to chain together recipes.
- Recipes are interpreted by Trifacta Wrangler and turned into commands that can be executed against data.
- When initially created, a recipe contains no steps. Recipes are augmented and modified using the various visual tools in the Transformer Page.
- For more information on the process, see Transform Basics.
In a flow, the following objects are associated with each recipe, which are described below:
- Outputs
- References
Outputs and Publishing Destinations
Outputs contain one or more publishing destinations, which define the output format, location, and other publishing options that are applied to the results generated from a job run on the recipe.
When you select a recipe's output object in a flow, you can:
- Define the publishing destinations for outputs that are generated when the recipe is executed. Publishing destinations specify output format, location, and other publishing actions. A single recipe can have multiple publishing destinations.
- Run an on-demand job using the specified destinations. The job is immediately queued for execution.
References and Reference Datasets
References allow you to create a reference to the output of the recipe's steps in another dataset. References are not depicted in the above diagram.
When you select a recipe's reference object, you can add it to another flow. This object is then added as a reference dataset in the target flow. A reference dataset is a read-only version of the output data generated from the execution of a recipe's steps.
Working with recipes
Recipes are edited in the Transformer page, which provides multiple methods for quickly selecting and building recipe steps.
Run Jobs: When you are satisfied with the recipe that you have created in the Transformer page, you can execute a job. A job may be composed of one or more of the following job types:
- Transform job: Executes the set of recipe steps that you have defined against your sample(s), generating the transformed set of results across the entire dataset.
- Profile job: Optionally, you can choose to generate a visual profile of the results of your transform job. This visual profile can provide important feedback on data quality and can be a key for further refinement of your recipe.
- When a job completes, you can review the resulting data and identify data that still needs fixing. See Job Results Page.
- For more information on the process, see Running Job Basics.
Flow Example
The following diagram illustrates the flexibility of object relationships within a flow.
Figure: Flow Example
Type | Datasets | Description |
---|---|---|
Standard job execution | Recipe 1/Job 1 | Results of the job are used to create a new imported dataset (I-Dataset 2). |
Create dataset from generated results | Recipe 2/Job 2 | Recipe 2 is created off of I-Dataset 2 and then modified. A job has been specified for it, but the results of the job are unused.
|
Chaining datasets | Recipe 3/Job 3 | Recipe 3 is chained off of Recipe 2. The results of running jobs off of Recipe 2 include all of the upstream changes as specified in I-Dataset 1/Recipe1 and I-Dataset 2/Recipe 2. |
Reference dataset | Recipe 4/Job 4 | I-Dataset 4 is created as a reference off of Recipe 3. It can have its own recipe, job, destinations, and results. |
Flows are created in the Flows page. See Flows Page.
This page has no comments.