To prevent overwhelming the client or significantly impacting performance, generates one or more samples of the data for display and manipulation in the client application. Since
supports a variety of clients and use cases, you can change the size of samples, the scope of the sample, and the method by which the sample is created. This section provides background information on how the product manages dataset sampling.
When a dataset is first created, a background job begins to generate a sample using the first set of rows of the dataset. This initial sample is usually very quick to generate, so that you can get to work right away on your transformations.
If you are wrangling a dataset with parameters, the initial sample that is loaded in the Transformer page is taken from the first matching dataset. Subsequent samples generated from the Transformer page are sampled across all datasets matched by parameter values.
Additional samples can be generated from the context panel on the right side of the Transformer page. Sample jobs are independent job executions. When a sample job succeeds or fails, a notification is displayed for you.
As you develop your recipe, you might need to take new samples of the data. For example, you might need to focus on the mismatched or invalid values that appear in a single column. Through the Transformer page, you can specify the type of sample that you wish to create and initiate the job to create the sample. This sampling job occurs in the background.
NOTE: When a sample is executed from the Samples panel, it is launched based on the steps leading up to current location in the recipe steps. For example, if your recipe includes joining in other datasets, those steps are executed, and the sample is generated with dependencies on these other datasets. As a result, if you change your recipe steps that occur before the step where the sample was generated, you can invalidate your sample. More information is available below. |
Depending on the type of sample you select, it may be generated based on one of the following methods, in increasing order of time to create:
NOTE: When a flow is shared, its samples are shared with other users. However, if those users do not have access to the underlying files that back a sample, they do not have access to the sample and must create their own. |
For more information on creating samples, see Samples Panel.
After you have collected multiple samples of multiple types on your dataset, you can choose the proper sample to use for your current task, based on:
Tip: You can begin work on an outdated yet still valid sample while you generate a new one based on the current recipe. |
When a new sample is generated, any sort
transforms that have been applied previously must be re-applied. Depending on the type of output, sort order may not be preserved. For more information, see Sort Transform.
Samples taken from a dataset with parameters are limited to a maximum of 50 files when executed on the Photon running environment. You can modify parameters as they apply to sampling jobs in Flow View. See Flow View Page.
With each step that is added or modified to your recipe, checks to see if the current sample is valid. Samples are valid based on the state of your flow and recipe at the step when the sample was collected. If you add steps before the step where it was created, the currently active sample can be invalidated. For example, if you change the source of data, then the sample in the Transformer page no longer applies, and a new sample must be displayed.
Tip: After you have completed a step that significantly changes the number of rows, columns, or both in your dataset, you may need to generate a new sample, factoring in any costs associated with running the job. Performance costs may be displayed in the Transformer page. |
NOTE: If you modify a SQL statement for an imported dataset, any samples based on the old SQL statement are invalidated. |
You can generate a new sample of the same type through the Samples panel. If no sample is valid, you must generate a new sample before you can open the dataset.
A sample that is invalidated is listed under the Unavailable tab. It cannot be selected for use. If subsequent steps make it valid again, it re-appears in the Available tab.
currently supports the following sampling methods.
NOTE: The First rows sampling technique requires the Photon running environment. If the Photon running environment is disabled, please set |
This sample is taken from the first set of rows in the transformed dataset based on the current cursor location in the recipe. The first N rows in the dataset are collected based on the recipe steps up to the configured sample size.
These samples are fast to generate. These samples may load faster in the application than samples of other types.
Tip: If you have chained together multiple recipes, all steps in all linked recipes must be run to provide visual updates. If you are experiencing performance problems related to this kind of updating, you can select a recipe in the middle of the chain of recipes and switch it off the initial sample to a different sample. When invoked, the recipes from the preceding datasets do not need to be executed, which can improve performance. |
Random selection of a subset of rows in the dataset. These samples are comparatively fast to generate.You can apply quick scan or full scan to determine the scope of the sample.
Find specific values in one or more columns. For the matching set of values, a random sample is generated.
You must define your filter in the Filter textbox.
Find mismatched or missing data or both in one or more columns.
You specify one or more columns and whether the anomaly is:
Optionally, you can define an additional filter on other columns.
Find all unique values within a column and create a sample that contains the unique values, up to the sample size limit. The distribution of the column values in the sample reflects the distribution of the column values in the dataset. Sampled values are sorted by frequency, relative to the specified column.
Optionally, you can apply a filter to this one.
Cluster sampling collects contiguous rows in the dataset that correspond to a random selection from the unique values in a column. All rows corresponding to the selected unique values appear in the sample, up to the maximum sample size. This sampling is useful for time-series analysis and advanced aggregations.
Optionally, you can apply an advanced filter to the column.