In , a target is the set of columns, their order, and their formats to which you are attempting to wrangle your dataset. This target can be defined through imported or created datasets and must be assigned to an existing recipe. After it is assigned to a recipe, a target appears in the Transformer page to assist in your wrangling efforts. You can also apply changes to selected columns based on the target.
In general, a target consists of the set of information required to define the expected data in a dataset. Often referred to as a "schema," this target schema information can include:
A dataset associated with a target is expected to conform to the requirements of the schema. Where there are differences between target schema and dataset schema, a validation indicator is displayed.
In , a target is created from the information in a dataset and can be applied to a recipe in a flow. When you are working with the flow, the target information is available as your target for your wrangling activities. As you make changes in your recipe through the Transformer page, the target schema is available as a reference to see if your latest changes get you closer to matching the dataset to the target.
NOTE: A target schema contains information on column names, column data types, and the order in which the columns are organized in the target. The length of individual columns is not maintained or enforced. |
Targets are applied only after initial type inferencing has been applied to the loaded dataset.
Tip: As needed, you can disable initial type inferencing when data is imported into the product. See Import Data Page. |
settype
transform to any selected column. No pattern matching or standardization is applied. For more information, see Overview of Pattern Matching.A target schema is a snapshot of the source at the time of creation. You cannot modify a target schema within the product. You must delete it and recreate it.
Tip: If your target schema source is a recipe, then you can modify the recipe as needed and use it as your target again. |
The schema used to define a target can be imported and assigned from any of the following objects, including:
An imported dataset
NOTE: Changes to the underlying objects of a target schema are not reflected in the schema. A target schema is a snapshot of the object at the time of its creation. To update, delete the target and create a new one. For more information, see Create Target. |
Ideally, the source of the target schema should come from the publishing target. If you are publishing to a pre-existing target, you can create do one of the following:
You can create a target through one of the following mechanisms:
For more information, see Create Target.
After a target has been attached to a recipe, the target schema appears in a toolbar above the data grid along with a preview of the data. You can then make modifications to the data so that each column matches the definition for the corresponding column in the schema. See Data Grid Panel.
Through the data grid and the Column Browser, you can perform operations on selected columns in your dataset to align them with the target schema. For more information, see Column Browser Panel.
NOTE: You can run a job even if there are differences between the schema and your dataset. In |