This example illustrates how to apply hyperbolic trigonometric functions to your transformations. All of the functions take inputs in radians.

Functions:

The following functions can be computed based on the inverse of the above functions:

Also:

Source:

In the following sample, input values are in degrees:

X
-30
0
30
45
60
90
120
135
180


Transformation:

In this example, all values are rounded to three decimals for clarity.

First, the above values in degrees must be converted to radians. 

Hyperbolic Sine:

Hyperbolic Cosine:

Hyperbolic Tangent:

Hyperbolic Cotangent:

Hyperbolic Secant:

Hyperbolic Cosecant:


Results:

XrXTANHrXCOTHrXCOSHrXSECHrXSINHrXCSCHrX
-30-0.524-0.481-2.0791.140.877-0.548-1.825
000null110null
300.5240.4812.0791.140.8770.5481.825
450.7850.6561.5241.3240.7550.8681.152
601.0470.7811.281.60.6251.2490.801
901.5710.9171.0912.510.3982.3020.434
1202.0940.971.0314.120.2433.9970.25
1352.3560.9821.0185.3220.1885.2270.191
1803.1420.9961.00411.5970.08611.5530.087