To prevent overwhelming the client or significantly impacting performance, |
When a dataset is first created, a background job begins to generate a sample using the first set of rows of the dataset. This initial sample is usually very quick to generate, so that you can get to work right away on your transformations.
If the matching file is a multi-sheet Excel file, the sample is taken from the first sheet in the file.If you are wrangling a dataset with parameters, the initial sample loaded in the Transformer page is taken from the first matching dataset.
Additional samples can be generated from the context panel on the right side of the Transformer page. Sample jobs are independent job executions. When a sample job succeeds or fails, a notification is displayed for you.
As you develop your recipe, you might need to take new samples of the data. For example, you might need to focus on the mismatched or invalid values that appear in a single column. Through the Transformer page, you can specify the type of sample that you wish to create and initiate the job to create the sample. This sampling job occurs in the background.You can create a new sample at any time. When a sample is created, it is stored within your storage directory on the backend datastore.For more information on creating samples, see Samples Panel.
Depending on the type of sample you select, it may be generated based on one of the following methods, in increasing order of time to create:
on a quick scan across the dataset
Tip: Quick scan samples are executed in the |
on a full scan of the entire dataset
Tip: Full scan samples are executed in the cluster running environment. |
When a non-initial sample is executed for a single dataset-recipe combination, the following steps occur:
NOTE: When a sample is executed from the Samples panel, it is launched based on the steps leading up to current location in the recipe steps. For example, if your recipe includes joining in other datasets, those steps are executed, and the sample is generated with dependencies on these other datasets. As a result, if you change your recipe steps that occur before the step where the sample was generated, you can invalidate your sample. More information is available below. |
When your flow contains multiple datasets and flows, all of the preceding steps leading up to the currently selected step of the recipe are executed, which can mean:
Implications:
NOTE: When a flow is shared, its samples are shared with other users. However, if those users do not have access to the underlying files that back a sample, they do not have access to the sample and must create their own. |
Any parameters that are associated with your dataset can be applied to sampling:
Variables: You can apply override values to the defaults for your dataset's variables at sample execution time. In this manner, you can draw your samples from specific sources files within your dataset with parameters.
After you have created a sample, you cannot delete it through the application.
NOTE: |
After you have collected multiple samples of multiple types on your dataset, you can choose the proper sample to use for your current task, based on:
Tip: You can begin work on an outdated yet still valid sample while you generate a new one based on the current recipe. |
With each step that is added or modified to your recipe, checks to see if the current sample is valid. Samples are valid based on the state of your flow and recipe at the step when the sample was collected. If you add steps before the step where it was created, the currently active sample can be invalidated. For example, if you change the source of data, then the sample in the Transformer page no longer applies, and a new sample must be displayed.
Tip: After you have completed a step that significantly changes the number of rows, columns, or both in your dataset, you may need to generate a new sample, factoring in any costs associated with running the job. Performance costs may be displayed in the Transformer page. |
NOTE: If you modify a SQL statement for an imported dataset, any samples based on the old SQL statement are invalidated. |
You can generate a new sample of the same type through the Samples panel. If no sample is valid, you must generate a new sample before you can open the dataset.
A sample that is invalidated is listed under the Unavailable tab. It cannot be selected for use. If subsequent steps make it valid again, it re-appears in the Available tab.
All steps between the step in your current sample and the currently displayed step must be computed in the browser. As you build more complex recipes, it's a good idea to create samples at various steps in your recipe, particularly after you have executed a complex step. This type of sample checkpointing can improve overall performance.
For example, as soon as you load a new recipe, you should take a sample, which can speed up the process of loading.
Tip: You can annotate your recipe with comments, such as: |
For more information on sample types, see Sample Types.