This example illustrates how you can apply the following percentile-related functions to your transformations:

The following functions use an approximation technique for calculating median, percentile, and quartiles. In some cases, these calculations can be computed faster across large datasets.

Source:

The following table lists each student's height in inches:

StudentHeight
164
265
363
464
562
666
766
865
969
1066
1173
1269
1369
1461
1564
1661
1771
1867
1973
2066

Transformation:

Use the following transformations to calculate the median height in inches, a specified percentile and the first quartile.

Median: This transformation calculates the median value, which corresponds to the 50th percentile.

Percentile: This transformation calculates the 68th percentile.

Quartile: This transformation calculates the first quartile, which corresponds to the 25th percentile.

Results:

studentIdheightInapproxPercentile25Inpercentile25InapproxPercentile68Inpercentile68InapproxMedianInmedianIn
164646467.166.926666
265646467.166.926666
363646467.166.926666
464646467.166.926666
562646467.166.926666
666646467.166.926666
766646467.166.926666
865646467.166.926666
969646467.166.926666
1066646467.166.926666
1173646467.166.926666
1269646467.166.926666
1369646467.166.926666
1461646467.166.926666
1564646467.166.926666
1661646467.166.926666
1771646467.166.926666
1867646467.166.926666
1973646467.166.926666
2066646467.166.926666