This example illustrates how various type checking functions can be applied to your data.
ISVALID
- Returns true
if the input matches the specified data type. See VALID Function.ISMISMATCHED
- Returns true
if the input does not match the specified data type. See ISMISMATCHED Function.ISMISSING
- Returns true
if the input value is missing. See ISMISSING Function.ISNULL
- Returns true
if the input value is null. See ISNULL Function.NULL
- Generates a null value. See NULL Function.Source:
Some source values that should match the State and Integer data types:
State | Qty |
---|---|
CA | 10 |
OR | -10 |
WA | 2.5 |
ZZ | 15 |
ID | |
4 |
Transformation:
Invalid State values: You can test for invalid values for State using the following:
The above transform flags rows 4 and 6 as mismatched.
NOTE: A missing value is not valid for a type, including String type. |
Invalid Integer values: You can test for valid matches for Qty using the following:
The above transform flags as valid all rows where the Qty
column is a valid integer that is greater than zero.
Missing values: The following transform tests for the presence of missing values in either column:
After re-organizing the columns using the move
transform, the dataset should now look like the following:
State | Qty | mismatched_State | valid_Qty | missing_State_Qty |
---|---|---|---|---|
CA | 10 | false | true | false |
OR | -10 | false | false | false |
WA | 2.5 | false | false | false |
ZZ | 15 | true | true | false |
ID | false | false | true | |
4 | false | true | true |
Since the data does not contain null values, the following transform generates null values based on the preceding criteria:
You can then use the ISNULL
check to remove the rows that fail the above test:
Results:
Based on the above tests, the output dataset contains one row:
State | Qty | mismatched_State | valid_Qty | missing_State_Qty | status |
---|---|---|---|---|---|
CA | 10 | false | true | false | ok |